CONSEQUENCES OF NOT MAINTAINING ADEQUATE RAIL NEUTRAL TEMPERATURE

FRA Track Safety Symposium

St. Louis, MO

April 5, 2022

Brad Kerchof

Advanced Rail Management

Norfolk Southern Railway (retired)

KEY CONCEPTS

T109 FRA cause code for track alignment

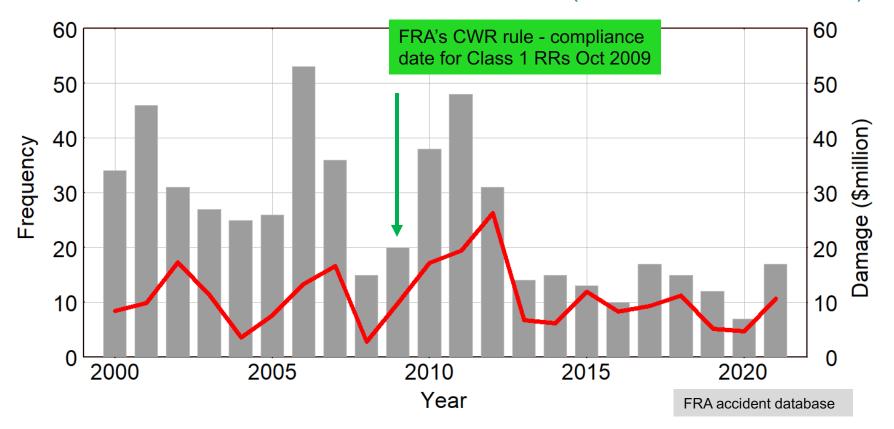
irregular (buckled/sunkink)

RNT Rail Neutral Temperature

ΔT Change in temperature; also difference

between RNT and actual rail temperature

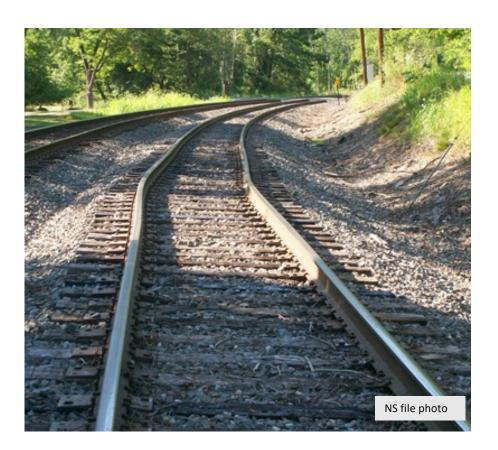
ΔT of 60°F Threshold for wood tie track buckling


Typical rail -20° to 135°F (ambient -20° to 100°F) temp range

Solar
Absorption

The increase in rail temperature above ambient caused by solar radiation

T109 TRACK ALIGNMENT IRREGULAR (BUCKLED/SUNKINK)


WHAT IS RAIL NEUTRAL TEMPERATURE (RNT)?

- Temperature at which rail is neither in compression nor tension
- Temperature at which rail is (longitudinally) stress-free
- Temperature at which rail is installed

WHY IS RNT IMPORTANT?

Knowing RNT allows us to manage the risk of buckled track

RELATIONSHIP BETWEEN RAIL LENGTH AND TEMPERATURE

$$\delta_T = a \cdot \Delta T \cdot L$$

Where

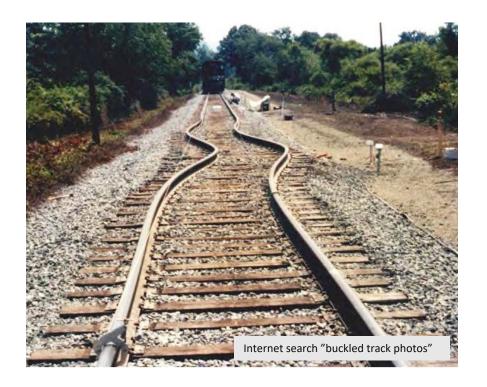
- δ_T change in length due to change in temperature (inches)
- a coefficient of thermal expansion for steel (6.6 x 10⁻⁶ in/in/°F)
- ΔT change in temperature (°F)
- L initial length (inches)

For a 100-ft piece of rail, ΔT of 60°F results in δ_T = 0.5 inches

For 1440 ft of welded rail, ΔT of 60°F results in δ_T = 6.6 inches

WHAT IS A REASONABLE RNT?

One railroad's standard procedure:


- ✓ Install at 95°F (40° below likely max rail temp)
- ✓ Use a rail heater if temperature is less than 80°

WHAT CAUSES TRACK TO BUCKLE?

A large ΔT (a large difference between RNT and actual rail temp); on wood tie track, at least 60° .

Typically...the root cause of a track buckle is not that the actual rail temp has gotten too high.... It's that RNT has gotten too low.

WHAT CAN CAUSE LOW RNT?

Repairing this broken weld will add close to 3 inches of rail (rail temp at the time was 20°F)

This curve pulled inward in cold weather (note voids at the ends of the ties)

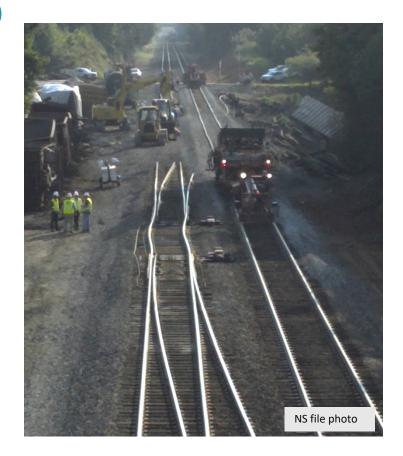
WHAT CAN CAUSE LOW RNT?

- 1) Laying rail at too low a temperature
- 2) Adding rail by cutting in a longer piece than is cut out
- Adding rail by making thermit welds when joints are pulled open
- 4) A curve pulls inward during cold weather, shortening its length
- 5) Insufficient rail restraint rail moves longitudinally under train traffic (due to insufficient or ineffective anchors), causing an increase in RNT at one spot and a decrease in RNT at another spot
- 6) Heat transfer from wheels, caused by a train traveling down grade with air brakes applied (this does not change RNT; rather, it can cause an unusually high actual temp)

CONSEQUENCES OF LOW RNT

Next up: Four buckled track derailments caused by low RNT due to.....

- Adding rail by cutting in a longer piece than was cut out (during cold weather)
- Adding rail by making thermit welds when joints are pulled apart (during cold weather)

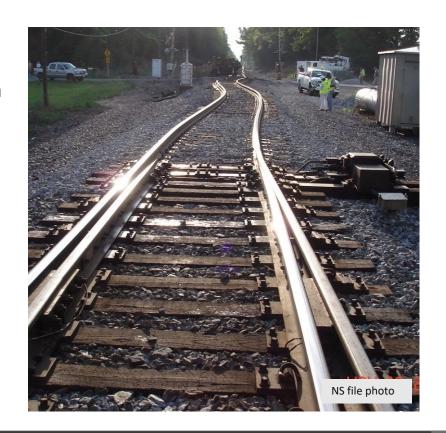

CONSEQUENCE OF LOW RNT (#1)

Mt. Airy, GA - August 2012

- Preceding November Installed 4 stock rails, 4 switch points & both rails between switches, rail temp 60°.
- January A dozen thermite welds at temps between 14° and 53°; 2 inches added to each side, according to welders' rail-added reports.
- August 1 Buckled track derailment, air temp 91°

Rail temp analysis

• RNT est. 20° - 50° , actual rail temp 110° , $\Delta T > 60^{\circ}$

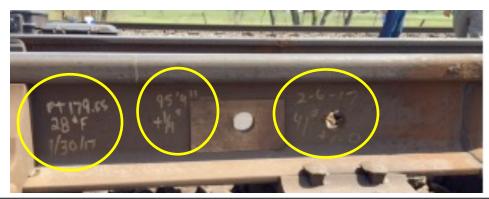

CONSEQUENCE OF LOW RNT (#2)

Bowler, VA - May 2012

- February Removed a no. 20 turnout, installed a no. 10 turnout and 3 track panels. Temperature was in the upper 40's. No rail-added report.
- March 18 thermite welds at temps between 50° and 60°. No rail-added report.
- May 16 Buckled track derailment, air temp 83°

Rail temp analysis

• RNT est. 50° , actual rail temp 110° , $\Delta T 60^{\circ}$



CONSEQUENCE OF LOW RNT (#3)

McVey, PA - April 2017

- January Installed two 95-ft rails between two no. 20 turnouts, temp 28° N rail and 44° S rail; rail added 1/4" and 1/8".
- February 6 thermite welds at 41°; 0" rail added.
- April 14 forecast high temperature of 69°

Feeling any anxiety?

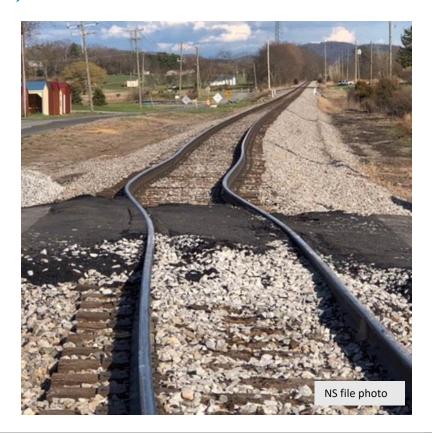
CONSEQUENCE OF LOW RNT (#3)

McVey, PA - April 2017

- January Installed two 95-ft rails between two no. 20 turnouts, temps 28° N rail and 44° S rail
- February Thermite welds at 41°
- April 14 Buckled track derailment, air temp 69°

Rail temp analysis

• RNT 28° - 44° , actual rail temp est. 95° by ENSCO rail prediction model, $\Delta T 60^{\circ}$

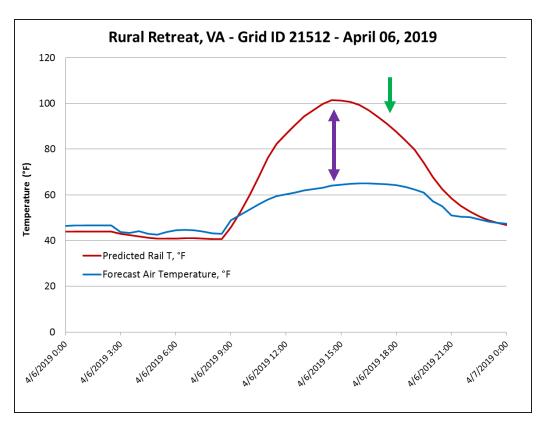


CONSEQUENCE OF LOW RNT (#4)

Rural Retreat, VA - April 2019

- Preceding November Installed 42 ft. rails on H and L sides through crossing; joints thermite welded; temp < 30° for all of this work.
- January Changed out Sperry rail adjacent to crossing on H rail; joints thermite welded; temp < 30°.
- Crossing was on the supervisor's rail-added list; adjustment waiting for warm weather.
- April 6 forecast: temperature in the mid 60's

Feeling any anxiety?



RAIL ADDED DATA WAS RECORDED PROPERLY (#4)

RIGHT RAIL								
Date	Rail Added	MP		Work	Temp			
11/14/201	1	NB	348.95	Rail change-out thru xing	27			
11/27/2018	0.5	NB	348.95	Thermite Weld	29			
11/28/2013	0.5	NB	348.96	Thermite Weld	25			
1/31/2019	0.5	NB	348.97	Sperry Defect	18			
TOTAL	2.5							

LEFT RAIL							
Date	Rail Added	MP		Work	Temp		
11/14/2018	1	NB	348.95	Rail change-out thru xing	27		
11/28/2018	0.75	NB	348.95	Thermite Weld	24		
TOTAL	1.75						

ENSCO RAIL TEMPERATURE PREDICTION MODEL (#4)

- The accuracy of the model was validated when we measured actual rail temp of 88° at 6:00 pm
- Note difference between ambient (64°) and predicted rail temp (101°) at 3:00 pm (time of derailment)
- The impact of solar radiation was substantial – predicted rail temp was 37° above ambient

Rail temp analysis

• RNT < 30° , actual rail temp est. 101° by ENSCO model, $\Delta T > 60^{\circ}$

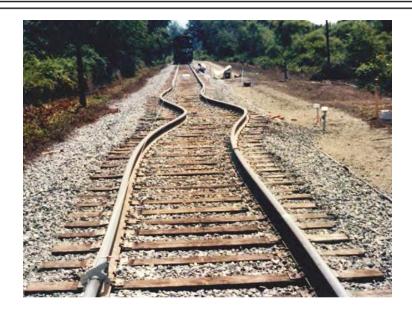

OBSERVATIONS FROM THESE FOUR DERAILMENTS

1st & 2nd derailments

- 150+ ft of rail changed out and welds made at temperatures between 40° & 50°
- Rail added recorded at only one of site
- Neither site was "on the list" for adjustment. Air temps at time of derailment were 83° and 91°

3rd & 4th derailments

- 40 95 ft of rail changed out and welds made at temperatures between 18° an 44°
- Track folks did an excellent job documenting rail added
- Both sites were "on the list" for adjustment
- Track buckled at a surprisingly low air temperature in the 60's!


WHAT TO TAKE AWAY FROM THIS PRESENTATION

- Most buckled track derailments are related to something that happened during cold weather (track shift, rail change-out or welding) that resulted in a lower RNT.
- How you handle these cold-weather changes to RNT is key to managing your risk of buckled track.
- 3) Keep a record of any trackwork (or curve shifts) that results in a lower RNT. Then adjust that rail at your first opportunity come warm weather.
- 4) Track buckling is determined by ΔT , not ambient temperature.
- 5) FRA data shows that the majority of buckled track derailments occur near fixed assets a turnout, road crossing or bridge. My suspicion: Rail change-outs (and welding) are likely to occur at these locations.

QUESTIONS?

This misalignment is not a heat buckle – its shape is not the typical "S" found in tangent track (like the heat kink above).

Rather, this misalignment was caused by a severe train run-in, which pushed two-car lengths of track to one side.